Diffusion in Elongated Membranes
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ABSTRACT: The model proposed by Cohen and collabo-
rators is used to describe the process of diffusion through
polymeric membranes subjected to externally applied exten-
sions. This continuum mechanics approach is compared
with a model developed via a mesoscopic theory. Experi-
mental data on a variety of polymer/solvent systems are

successfully described by the model. It was found that the
flux-versus-time curves for deformations up to 80% elonga-
tion could be reduced to a master curve. © 2005 Wiley Peri-
odicals, Inc. ] Appl Polym Sci 99: 27462751, 2006
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INTRODUCTION

Polymeric materials are now widely used in protective
clothing, liners, and separation processes, which has
led to a growing number of investigations of the trans-
port properties of various fluids through polymeric
membranes. The diffusion process through polymers
is always non-Fickian. So far, no simple model can
describe the diverse time-dependent behaviors associ-
ated with non-Fickian diffusion. Stastna and De Kee'
discussed some of the non-Fickian models. Recent
developments in diffusion through polymers was re-
viewed by Neogi.?

Membranes may be subjected to stretching and var-
ious other forms of external deformation, and it is
desirable to consider the effects of these deformations
on the barrier properties of the membranes. So far,
only a limited number of reports on the effects of
applied deformation on the transport properties of
fluids in polymers have appeared. For some polymer/
solvent systems applied deformation enhances diffu-
sion, and for other systems the opposite effect is ob-
served. It has also been found that, for the same sys-
tem, the effect of applied deformation depends on the
magnitude of the deformation. Li et al.*> summarized
some of the experimental observations and presented
some of their results for extensions up to 20%. In this
article, we consider the effects of uniaxial elongation
on the transport properties of various polymer/sol-
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vent systems for elongations up to 80%. The Cohen
model is used to predict the experimentally obtained
flux-time profiles. It is also compared with a model
developed via a mesoscopic approach.

EXPERIMENTAL

The permeation measurements were obtained using a
modified ASTM permeation cell (ASTM F-739-85)
combined with a homemade stainless drawing appa-
ratus. The membrane was fixed at one end by a clamp
and stretched in one direction until the desired elon-
gation was attained. The top and bottom parts of the
cell were firmly clamped with the elongated mem-
brane in between. The penetrant was introduced into
the upper chamber, and after diffusing through the
membrane, it was automatically sampled by a Valco
programmed valve and analyzed by a GC flame-ion-
ization detection system. Details of the experimental
procedures are given in Xiao et al.* and in Hinestroza.’

Mathematical model

We considered a rectangular Cartesian coordinate sys-
tem (x,y,z) with the origin at the center of the upper
surface (in contact with the penetrant) of the mem-
brane. The diffusion process was in the x direction,
and the elongation was in the z direction.

If (X,Y,Z) and (x,y,z) are the positions of a material
point in the undeformed and deformed states, respec-
tively, then for a uniaxial elongation, the relationship
between (X,Y,Z) and (x,y,z) can be written as

X = /\1X,

y = )\1Y, z = )\3Z (1)
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and for an incompressible material as

7\%)\3 =1 (2)

The draw ratio, vy, is related to the extension, ¢, as

8:)\3_1 (3)

If L and [ are the thicknesses of the membrane in the
undeformed and deformed states, respectively, it fol-
lows from egs. (2) and (3) that

] =

)\1L =

L/\1T + & (4)

Continuum mechanics approach (CMA)

To describe the non-Fickian diffusion, we adopted the
model proposed by Cohen and White.® In this model,
the diffusion process is driven by a difference between
concentration and internal stress, . The one-dimen-
sional diffusion equation can be written as

)

where c is the concentration, D and E are assumed to
be independent of ¢, D is the molecular diffusion
coefficient, and E is a stress-driven diffusion coeffi-
cient.

The relationship between o and c is assumed to be

a*c
Pz

where 3;, B,, and v are assumed to be constants.

Eq. (6) can be considered to be an analog of Jef-
ferey’s model in linear viscoelasticity but expressed
differently from Chan Man Fong et al.” and Hine-
stroza.” An advantage of using eq. (6) is that it clearly

o _ adc 6
Brgyp to=vg+ (6)
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shows the physical properties of the polymer that may
relate to the diffusion process. For example, in Jef-
ferey’s model, B, is a relaxation time and 3, is a
retardation time. The relaxation and retardation times
describe the mechanical behavior of the polymer re-
acting to a penetrant concentration change.

We introduced the following dimensionless quanti-
ties

¢t = c/c, t* = t/(L*/D), x* = x/L,
o* = o/[ve,/(L*/D)], v, = Ev/L?
Y2 = Bl/(LZ/D)/ Y3 = Bz/(Lz/D) (7)
Combining egs. (5)—(7) yielded
ac* 9%t 0*a*
ot T ox T Mgy ®)
. do*  ac* 9%c* 9
U+V2W_W+V3W )

The appropriate initial and boundary conditions are

c*(x*,0) = 0, o*(x*,0) = 0, c*(0,t*) = 1,

(L) = 0 (10)

The dimensionless quantities t', ", v, v, and 7v5 also
are defined differently here than in Chan Man Fong et
al.” and Hinestroza.” The advantage of choosing these
dimensionless quantities is that the dimensionless pa-
rameters vy;, ¥,, and vy; are independent.

The solution of egs. (8) and (9) subject to conditions
in eq. (10) can be obtained by the continuum mechan-
ics method described in Chan Man Fong et al.” The
penetrant concentration profile, ¢, inside the mem-
brane is given as:

2 (A, — 73A§)(1 - Y2A) _Mt/12/D)
@ _ <1 _ x> n i ms(Ar — A1 = ya(A + Ay + /\1)\2'}’273)C . ( x)
c L ~1 2 (M = yAD( = ) i UL
sl — A1 — 1A+ )+ MAyays
(11)
and the flux, F, at time t at the surface x = L is
expressed as:
A = A = v — oyt 'Yl’Ys)\%)A,M/(Lz/D)_
r = pDc; 1 — 2§(_ 1) (A — )\2)(12 = (A + Ay + )\1)\27273):
L . M = YA = v — yiA + 7173)\2);“/(“/13)
(A — )1 = ys(A + Ay + )\1)\2’)’2')/3)t (12)
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where

W+ (WP — 4ty

2V
W - WP = 4y
A2 = 2V

W =1+ 274y, + v,)
V=1mv+ 717352772 (13)

Note that in deriving the flux, we used the following
extension of Fick’s law

F = p’ 4 g2 14
N P\ ox 0x (14)

If we simplify eq. (6) to a Maxwell-type model (v,
= 0), the flux becomes:

Dc, ”
r=""% 2y
L
s=1
A1 z)\ Y2h )\_) 71)\1)67)\1t/(L2/D) _
(=1 Lok
/\1(]- ( '}’2)\2 ) 71)\2)€—A2[/(L2/D)
)\1 - )\2
(15)
and the concentration profile is given by:
c(x,t) X
o (1 - L>
Ei (1 — ’Yz)\l)e,/m/(LZ/D)
178 (A = Ay)
)\1(1 - 72/\2) —at/(L2/D) . X
- We sin S’ﬂz (16)

where

B (W + \,WZ — 4m%s%y,)
! 2y,
w (W = (W? — 477s%y,)
o 2y,
W =1+ 27y + ) (17)

In the special case of Fickian diffusion (y; = 0), the
flux, F, becomes:

XIAO, DE KEE, AND MORESOLI

DCS . 272 2
F = H’JL 1+ 23 (= 1) ™Dy (18)

s=1

which is an approximation of Fickian diffusion flux.

Mesoscopic theory approach (MTA)

This approach is based on the Hamiltonian formalism
and uses Poisson and dissipation brackets to derive
the governing equations of the diffusion process. The
detailed derivation of this mesoscopic theory ap-
proach can be found in Beris and Edward,® El Afif and
Grmela,’ and Liu and De Kee.!° For the sake of sim-
plicity, some assumptions have been made: (1) the
system under consideration is composed of a solvent
(small molecules or simple fluid) and a complex poly-
mer fluid (large molecules); (2) the molecules under
consideration are completely miscible; (3) the condi-
tions considered are isothermal; (4) the density of the
system is constant; (5) the system is in mechanical
equilibrium, and (6) bulk flow has not been consid-
ered (that is, the mass flux is relatively small).'® The
governing equations developed via this approach for a
one-dimensional diffusion problem are:

ac _ oF 19
Poar = 7 ax (19)
F = p(% 4 p 2 20
= —pD{o + T~ (20)
oMy, F

oMy, d F
ot p(1 — ¢) ax Mgy p(1 — ¢

myy
— AGy(1 — c)[(l - c(2 — CS))kBT/K — 1]

(21)

where A is a positive, real, valued phenomenological
parameter, G, is the modulus of elasticity of the poly-
mer, kg is the Boltzman constant, K is the characteristic
elastic constant, and T is the temperature. Note that a
conformation tensor, m, has been used as a state vari-
able to represent the internal structure of the polymer,
and m,; is a component of m. I'}; is a component of
tensor I', which relates the elastic and mixing parts of
the free energy of the system. Eq. (19) is the mass
balance equation, and eq. (20) is associated with mo-
mentum transfer.'® Eq. (21) defines the conformation
of the polymer chains and is associated with polymer
elasticity. The dimensionless form of egs. (19)—(21)
yielded two dimensionless parameters:
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I = Ke,, (22)
and
De — kT L? )
¢ =\eac)/\D (23)

where De is a Deborah number, and k;T/GyAK is a
characteristic time associated with polymer structural
changes. A characteristic flow time is associated with
L,/D.

Comparison of the two models

Both approaches used modify Fick’s first law to ac-
count for the effect of polymer structural change on
the diffusion process [egs. (14) and (20)]. The contin-
uum mechanics approach uses a macroscopic variable
(stress) to represent the convective flux because of the
deformation of the polymer. The mesoscopic theory
approach uses a mesoscopic variable (the conforma-
tion tensor) to account for the convective flux. The
extra stress tensor, o, can be expressed in terms of the
conformation tensor as follows,

I

. (24)

Oup = 2m

where ¢ is the free energy density.

In eq. (6), B; is a polymer relaxation time used to
define the dimensionless parameter, v,. This parame-
ter (vy,) is a Deborah number (a ratio of a relaxation
and a diffusion time). It has the same physical mean-
ing as the Deborah number, De, in the mesoscopic
theory approach. Thus, we can relate 3; to GoAK/kgT.

In deriving the governing equations via the meso-
scopic theory, we used a Maxwell-type model to ex-
press the free energy. The parameters vy; and II both
represent the influence of stress on the diffusion pro-
cess. More recently, Liu and De Kee'” proved II to be

2749

TABLE I
Values of Calculated Thickness I, and Measured
Thickness, I, for Various Values of Elongation, &, for
the Acetone Natural Rubber System

e (%) 0 20 40 60 80
1021, (cm) 7.7 7.0 6.5 6.1 5.75
1021 (cm) 7.7 7.03 6.51 6.09 5.74

a negative number in a swelling polymer. We there-
fore expected v, to be negative as well, as it was in
polymer swelling.

RESULTS AND DISCUSSION

The thickness of the membrane was measured with a
micrometer with an accuracy of 107> cm, and it could
also be calculated from eq. (4). Table I shows a com-
parison of the measured thickness (I,,) and the calcu-
lated thickness (I.) of the membrane for the acetone/
natural rubber system. The agreement between /,, and
I. also was excellent for other systems.

Once the penetrant came into contact with the mem-
brane, it took a finite time to diffuse through the
membrane and to be detected at the downstream side
of the membrane. This time lapse is the breakthrough
time, t,. In Table II we have listed the values of t, and
the ratio VE/ [ for the acetone/natural rubber system.
As expected, elongation lowered the value of t,. Note
also that the ratio \/E/ I is almost constant, suggesting
that the decrease of t, was a result mainly of the
thinning of the membrane.

We first tested the accuracy of eq. (18). Figure 1
shows dimensionless flux versus dimensionless time
using eq. (18) and a numerical solution of Fick’s laws.
The prediction of eq. (18) (squares in Fig. 1) deviated
slightly from the numerical solution at the initial
stage. That is, eq. (18) provided a reasonable predic-
tion of the Fickian diffusion process.

For the CMA, eq. (15) was programmed into an
Excel spreadsheet, and Excel Solver was used to de-

TABLE 1I
Effects of Elongation on Some Parameters of the Acetone/Natural Rubber System

Acetone/natural rubber system

& (%) 0 20

t,, (min) 22 19
t,/1 (min'/?/cm) 60.91 62.3
v -1.93 —1.48
Ya 29.97 49.10
7 (min) 229.68 149.96
B, (X 10° min) 6.88 7.39
Ev (X 107° cm?) —114.43 —72.52
F, X L (ug?/(cm) 1.04 0.98
I -1 -3

De 0.01 10

40 60 80
14 12 10
57.6 56.8 55.0
—0.93 —0.56 —0.067
60.01 90.03 121.52
139.70 133.86 116.88
8.38 12.05 14.20
—39.29 —20.84 —2.22
0.96 1.10 1.12
—4.2 —55 -7
30 32 50
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Figure 1 Figure 1 Dimensionless flux (F/F,) versus di-
mensionless time, 7: (M) model prediction [eq. (18)], (—)
numerical solution of Fick’s laws.

termine the best-fitting parameters. The criterion was
to maximize the R-squared value. The adjustable pa-
rameters were vy;, v,, and a characteristic diffusion
time, T = L?/D. We observed that the effective diffu-
sion coefficient, D (= F,L/pc,, where F, is the steady
state flux) did not lead to an acceptable prediction of
the experimental data. An apparent diffusion coeffi-
cient needs to be determined through a fitting process.
For MTA, the numerical analysis of egs. (19)-(21),
described in Liu and De Kee,"’ was applied to deter-
mine the best-fitting parameters.

The parameters of the acetone/natural rubber sys-
tem using the continuum mechanics approach are
listed in Table II. The R-squared values of this system
were 0.996, 0.996, 0.997, 0.998, and 0.999 for 0%, 20%,

0.8

Flux (pg/cmzs)
1

0.6

0.4+

0.2
0.0 ; . : —
0 20 40 60 80 100
time (min)
Figure 2 Flux versus time for an acetone/natural rubber

system at 298 K and different elongations: (l) 0%, (A) 20%,
(@) 40%, (O) 60%, (¥) 80%, (—) predictions of eq. (15).
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Figure 3 Flux versus time for an acetone/natural rubber
system at 298 K and different elongations: () 0%, (A) 20%,
(@) 40%; (O) 60%, (¥) 80%, (—) predictions of egs. (19)—(21).

40%, 60%, and 80% extension, respectively. Wolf and
Fu'! observed that an applied stress can either reduce
the surface energy or can open sites so as to allow
penetrant to enter the (stressed) region. Either case
leads to an increase in c,. In the present study, how-
ever, we considered c, to be constant (¢, = 0.1 at zero
deformation).

The dimensionless parameter vy, demonstrates the
importance of stress on the diffusion process. Table II
shows that the magnitude of y; decreased as a result
of applying an external stress. Eq. (6), which relates
stress to concentration, underestimated the effect of
stress. The stress was related to the deformation of the
polymer chains from the swelling, which was related
to the osmotic pressure. We note that eq. (6) predicted
zero stress at equilibrium for a swelling polymer,
which was not realistic. Table II shows that external
deformation greatly reduced the effect of concentra-
tion (the magnitude of Ev decreased). When an extra
stress was applied to the polymeric membrane, the
polymer relaxed over time (B increased). The negative
value of y; means that the relaxation of the polymer
decreases the flux.

Dimensionless time, y,, provides an additional mea-
sure of the effect of stress on the diffusion process. The
v, values were very different from the De numbers
obtained using the mesoscopic theory. We note that
both addressed the same physical meaning and both
increased with elongation.

Table II also shows that the characteristic diffusion
time (1 = L?/D) decreased with elongation. However,
the modified flux (which is the experimental flux
times the membrane thickness) only changed slightly.
The decrease in characteristic diffusion time and the
increase in steady-state flux were thus mainly a result
of the decreased thickness of the membrane.

Figures 2 and 3 compare the predictions of the CMA
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Figure 4 Plot of F/F, versus (t — t,)F, for a toluene/

nitrile rubber system at 298 K and different elongations: (@)
0%, (H) 20%, (A) 40%, (V) 60%, (¢) 80%.

and MTA methods with the experimental data for an
acetone/natural rubber system. The agreement be-
tween the experimental data and the model prediction
was quite good.

We observed that, for several solvent/rubber pairs,
the shapes of the F-versus-t curves were similar for all
elongations. This suggests that it is possible to obtain
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a master curve by plotting F/F, versus (! — t,)F,.
Figure 4 shows such a plot for a toluene/nitrile rubber
system. This means that once F, and t, are known, the
evolution of F can be described as a function of time.

The results of the present study were only for an
extension of up to 80%, and the extension was in a
direction normal to the direction of the diffusion. For
higher extensions the effects of the applied extension
could be more pronounced.'!!?

The authors acknowledge helpful discussions with Dr. J.
Hinestroza.

References

1. Stastna, J.; De Kee, D. Transport Properties in Polymers; Tech-
nomic Publishing: Lancaster, PA, 1995.

2. Neogi, P. Diffusion in Polymers; Marcel Dekker: New York,
1996.

3. Li, Y,; De Kee, D.; Chan Man Fong, C. F; Pintauro, P.; Burczyk,
A. ] Appl Polym Sci 1999, 74, 1584.

4. Xiao, S.; Moresoli, C.; Bovenkamp, J.; De Kee, D. ] Appl Polym
Sci 1997, 65, 1833.

5. Hinestroza, J.P. Ph.D. Dissertation, Tulane University, 2002.

6. Cohen, D. S.; White, A. B. SIAM ] Appl Math 1991, 51, 472.

7. Chan Man Fong, C. F.; Moresoli, C.; Xiao, S.; Li, Y.; Bovenkamp,
J.; De Kee, D. ] Appl Polym Sci 1998, 67, 1885.

8. Beris, A. N.; Edwards, B. . Thermodynamics of Flowing System
with Internal Microstructure; Oxford University Press: New
York, Oxford, UK, 1994.

9. El Afif, A.; Grmela, M. ] Rheol 2002, 46, 591.

10. Liu, Q.; De Kee, D. Rheol Acta 2005, 44, 287.
11. Wolf, C. J; Fu, H. ] Polym Sci, Part B: Polym Phys 1996, 34, 75.
12 . Arvanitoyannis, I.; Heath, R. Polym Int 1992, 29, 165.



